# Qweak Detector System (WBS 1)

Greg Mitchell
Physics Division
Los Alamos National Laboratory







## **Q**<sub>weak</sub> Spectrometer Optics and Toroidal Magnet

 $Q_{weak} \ spectrometer: \\ optics from \ GEANT \ simulation \\ provides \ clean \ elastic/inelastic \ electron \ separation \ at \ the \ focal \ plane$ 



 $Q_{weak}$  toroidal magnet: 8 resistive toroidal coils with simple shape

location of detector active area

## Detector and Front End Electronics Requirements

## Focal plane detector requirements:

- Operation at counting statistics
- Uniformity of response and linearity
- Insensitivity to backgrounds:  $\gamma$ ,  $\eta$ ,  $\pi$ ,  $\eta$  (to avoid both dilution and false asymmetries)
- Radiation hardness (expect > 300 kRad)
- Operation in current and pulse mode
- Negligible electronic noise contribution

## Current mode detection of elastically scattered ein eight synthetic quartz Cerenkov detectors



## Synthetic Quartz (fused silica)

index of refraction ~1.47, angle of total internal reflection=43° for  $\beta=1$ , Cerenkov angle is  $\cos \theta = 1/\beta n = 47^{\circ}$ momentum threshold =  $\frac{m}{\sqrt{n^2-1}}$  (= 0.93 m for n = 1.47) synthetic quartz is radiation hard at the few 100 krad level polishing requirements: optical polish 25 Å rms reflectivity 0.997 thin to minimize showering



St. Gobain Spectrosil 2000

## Increase in run time due to showering in detectors (simulation)



Relative experiment running time vs. quartz Cerenkov detector thickness

Acceptance of Cerenkov cone for total internal reflection



Normally incident electron - entire cone is internally reflected Electron incident at angle - part of cone is too steep

Rotation of detectors to increase light collection uniformity



## Simulation of improvement of uniformity in x & y

0° rotation



12.5° rotation



## **Photomultiplier tubes**

130 mm diameter window (5 in.) eight stages (for 10<sup>3</sup> gain with reasonable voltage per stage) S20 photocathode: reasonable Q.E., low sheet resistivity UVT glass front window gettered (prevent photocathode poisoning) anode lifetime ~ 500 C (require x10 or more less) linearity: specified 2% at 200 mA anode current

candidate tubes ordered from Photonis, delivery March 2003
--testing necessary

### **Front End Electronics**



50 photoelectrons/e- x 0.7 GHZ = 6 nA cathode current run PMT at gain of 1000, then gain of  $10^6$  in low-noise amplifier = 6 V

- Normal operation in current mode
- Connection for auxiliary pulse mode (50  $\Omega$  cable, and turn up HV)
- Negligible pickup
  - —Surrounded by Faraday cage
  - —Only one ground to each package
  - —Optically isolated from DAQ
- Low electronic noise contribution compared to counting statistics
- 1 MHz 16 bit ADC will allow for over sampling

#### Front End Electronics ADC



## 16-Bit, 1 MSPS CMOS ADC

AD7671\*

#### **FEATURES**

Throughput:

1 MSPS (Warp Mode) 800 kSPS (Normal Mode)

INL: ±2.5 LSB Max (±0.0038% of Full Scale) 16-Bit Resolution with No Missing Codes

S/(N + D): 90 dB Typ @ 250 kHz

THD: -100 dB Typ @ 250 kHz

Analog Input Voltage Ranges: Bipolar: ±10 V, ±5 V, ±2.5 V

Unipolar: 0 V to 10 V, 0 V to 5 V, 0 V to 2.5 V

Both AC and DC Specifications

No Pipeline Delay

Parallel (8/16 Bits) and Serial 5 V/3 V Interface SPIT /QSPIT /MICROWIRE //DSP Compatible

Single 5 V Supply Operation

Power Dissipation

112 mW Typical

15 μW @ 100 SPS

#### FUNCTIONAL BLOCK DIAGRAM



### Front End Electronics Amplifier



## Ultralow Noise, High Speed, BiFET Op Amp

AD745

**FEATURES** 

ULTRALOW NOISE PERFORMANCE 2.9 nV/\Hz at 10 kHz

0.38 μV p-p, 0.1 Hz to 10 Hz

6.9 fA/ Hz Current Noise at 1 kHz

**EXCELLENT AC PERFORMANCE** 

12.5 V/µs Slew Rate

20 MHz Gain Bandwidth Product

THD = 0.0002% @ 1 kHz

Internally Compensated for Gains of +5 (or -4) or Greater

**EXCELLENT DC PERFORMANCE** 

0.5 mV Max Offset Voltage

250 pA Max Input Bias Current

2000 V/mV Min Open Loop Gain

Available in Tape and Reel in Accordance with

EIA-481A Standard

#### CONNECTION DIAGRAM

16-Lead SOIC (R) Package



## **Q**weak Detector System Design





preliminary design for support and housings

## **Q**weak **Detector System Status & Schedule of Hardware**

#### Status:

Basic design exists, early 2003 construction of prototype and testing Six 1 m long synthetic quartz bars ordered, delivery February 2003 Four candidate PMTs ordered, delivery February 2003 ADCs and evaluation board obtained FEE- work remains on DSP/interface to DAQ

#### Schedule:

#### **Detectors**

| 2003 | obtain PMTs and sample quartz                                          |
|------|------------------------------------------------------------------------|
|      | design tests for quartz and PMT performance                            |
|      | build prototype PMT bases                                              |
| 2004 | perform test measurements for: light collection efficiency, linearity, |
|      | radiation damage and PMT aging, PMT/quartz coupling                    |
| 2005 | finalize design, select mounting and shielding scheme,                 |
|      | test with final electronics and configuration                          |
| 2006 | install detectors, run experiment                                      |

#### FEE

| 2003 | obtain candidate ADCs, evaluation board, DSP                 |
|------|--------------------------------------------------------------|
|      | develop design for pulse counting mode electronics           |
|      | build first generation prototype                             |
| 2004 | perform test measurements for noise levels, radiation damage |
|      | build second generation prototype                            |
| 2005 | design finalized, assembly of final electronics              |
|      | test with final electronics and configuration                |
| 2006 | install electronics, run experiment                          |

Capital budget: \$600k, cost + contingency: \$825k